Communication Complexity and Lower Bounds on Multilective Computations
نویسندگان
چکیده
منابع مشابه
Lower Bounds on Communication Complexity ∗
A notion of ”communication complexity” is used to formally measure the degree to which a Boolean function is ”global”. An explicit combinatorial lower bound for this complexity measure is presented. In particular, this leads to an exp(Ω( √ n)) lower bound on the complexity of depth-restricted contact schemes computing some natural Boolean functions in NP.
متن کاملLower Bounds in Communication Complexity
The communication complexity of a function f(x, y) measures the number of bits that two players, one who knows x and the other who knows y, must exchange to determine the value f(x, y). Communication complexity is a fundamental measure of complexity of functions. Lower bounds on this measure lead to lower bounds on many other measures of computational complexity. This monograph survey lower bou...
متن کاملCommunication Lower Bounds for Distributed-Memory Computations
In this paper we propose a new approach to the study of the communication requirements of distributed computations, which advocates for the removal of the restrictive assumptions under which earlier results were derived. We illustrate our approach by giving tight lower bounds on the communication complexity required to solve several computational problems in a distributedmemory parallel machine...
متن کاملLower bounds on threshold and related circuits via communication complexity
Communication-complexity definitions and arguments are used to derive linear (Q(n)) and almost-linear (Q(n/ log n)) lower bounds on the size of circuits implementing certain functions. The techniques utilize only basic features of the gates used and of the functions implemented hence apply to a large class of gates (including unbounded fan-in AND/OR, threshold, symmetric, and generalized symmet...
متن کاملCommunication Complexity Lower Bounds by Polynomials
The quantum version of communication complexity allows Alice and Bob to communicate qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication [17, 11, 2], but except for the inner product function [11], no bounds are known for the model with unlimited prior entanglement. We show that the “log rank” lower bound extends t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO - Theoretical Informatics and Applications
سال: 1999
ISSN: 0988-3754,1290-385X
DOI: 10.1051/ita:1999113